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Introduction 

The importance of distinguishing the effects of age, period, and cohort is given by 

the different nature of the relationship that these time components have with the outcome 

of interest. Age effects are internal to the individual and they reflect the biological and 

social processes of aging (Yang & Land, 2013). Period effects arise from events and 

changes happening as time passes by that affect individuals of all ages, for example: wars, 

famine, policy changes. Finally, cohort effects derive from differences between groups 

of people who go through a common initial event (e.g. birth) in the same time unit (e.g. 

year). Cohort effects arise from a variety of time related changes: firstly, the similar 

experience that birth cohorts have in going through historical and social event at the same 

age, thus indicating the intersection of individual level characteristics and macrosocial 

influences; secondly, birth cohorts continuously change the composition of the population 

thus reflecting social change (Ryder, 1965). As a whole, APC analysis allows to describe 

the complex social, historical and environmental factors that simultaneously impact 

individuals and populations (Yang & Land, 2013). 

This paper aims at summarizing methods for age-period-cohort analysis reporting 

their main characteristics as well as advantages, disadvantages and related relevant 

results. Eventually it provides an organized classification of methodologies and important 

literature which is useful for researchers interested in approaching this type of analysis. 
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Theoretical concepts and the identification problem 

The three time components at the basis of demographic (but also epidemiologic 

and other social sciences) analysis are age (A), period (P), and cohort (C). They highlight 

different perspectives when interpreting time related changes in the outcome of interest. 

Briefly, age effects are related to the aging process of individuals and therefore are “the 

effects of differences in the ages of the individuals at the time of observation on an 

outcome of interest” (Yang & Land, 2013). Period effects are those related to events that 

occur at a specific point in time and affect all people of all ages ” the effects of differences 

in the time periods of observation or measurement of the outcome” (Yang & Land, 2013). 

Cohort effects, instead, are those arising from characteristics that are shared from a group 

of individuals going through the same event in the same span of time. The most common 

groups of this kind found in scientific studies are birth year cohorts, meaning, for 

example, all the people born in a certain year (but it could also be, for instance, all people 

that married in a certain month). In other words, “the effects of differences in the year of 

birth or some other shared life events for a set of individuals” (Yang & Land, 2013). It 

may, sometimes, be confusing to distinguish these three effects on a conceptual level and 

only providing formal definitions might not be the best way to clarify the nuances. Suzuki 

(2012) gives an informal way to understand and to place them in the everyday life; the 

author reports a fictional conversation between two workers:  

 

Senior worker: “I can't seem to shake off this tired feeling. Guess I'm just getting old.” 

[Age effect] 

 

Junior worker: “Do you think it's stress? Business is down this year, and you’ve let your 

fatigue build up.” [Period effect] 

 

Senior worker: “Maybe. What about you?” 

 

Junior worker: “Actually, I'm exhausted too! My body feels really heavy.” 

 



 
 

 
 
 

 

Senior worker: “You’re kidding. You’re still young. I could work all day long when I was 

your age.” 

 

Junior worker: “Oh, really?” 

 

Senior worker: “Yeah, young people these days are quick to whine. We were not like 

that.” [Cohort effect] 

 

Arguably, the main point of discussion about age-period-cohort analysis in the 

literature is the identification problem. The identification problem arises from the 

impossibility of disentangling age, period, and cohort effects in a unique way given their 

perfect multicollinearity: by knowing two components it is possible to find the third by 

linearly combining them. For example: 

 

𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑐𝑐𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑜𝑜 

 

It follows that ordinary least square or maximum likelihood estimators of 

generalized linear models (such as linear regression, log-linear regression, logistic 

models) do not exist. The coefficients cannot be uniquely defined as there is an infinite 

number of possible solutions. Hence, it is not possible to estimate age, period, and cohort 

effects unless one or more constraints on the coefficients are imposed (a mathematical 

outline of the identification problem can be found in Yang & Land (2013)).  

 

 

Analytical approaches to APC analysis and to the identification problem 

Since the first considerations on the concept of cohort effects, followed by the 

analysis of time effects in more and more detail, arriving to today’s sophisticated age-

period-cohort model, there has been a lively debate on the pro and cons of each method 

and on assessing which way leads to the most reliable results. Many propositions have 

been put forward creating a vast literature on the subject; it is therefore relevant to 



 
 

 
 
 

 

organize such contributions in terms of timing and features in order to make an informed 

choice when approaching suitable data. 

One of the first contribution is the seminal work by Frost (1939) who pointed out 

the interesting perspectives that can be studied when taking into account all three 

components. His approach was descriptive and he mainly used graphs to display his 

theory; he studied data about tuberculosis in Massachusetts at the turn of the twentieth 

century and showed how differences in mortality for certain age groups changed through 

time and by cohorts and how age-specific death rate showed a more regular pattern when 

looked from cohorts than from periods. His study highlighted the importance of early life 

conditions compared to current conditions on the development of a disease that has long 

latency. 

There has been an increasing interest in writing and publishing scientific works 

related to age-period-cohort analysis and findings (Figure 1). 

 

 
Figure 1: Number of publications within the Web of Science database that have been written in English and that 

contain the words "age period cohort" in the title. (https://apps.webofknowledge.com) 

In time, there has been a shift from descriptive studies to more and more empirical 

methods. And with this shift the attention has moved to the identification problem. 

Several authors have presented different categorization of age-period-cohort models 

(Holford, 1991; Robertson, Gandini, & Boyle, 1999; Yang & Land, 2013). This review 

uses this references as a starting point to provide a complete outline and classification of 

the models used in the last 60/70 years. 



 
 

 
 
 

 

 

Descriptive approaches 

Chronologically, the first analyses discussing age, period, and cohort in relation 

to each other have been of a descriptive nature and used indicators such as age 

standardized rates or age specific rates. Such measures are still in use today’s studies as 

they are often useful to present the data and provide insightful graphical description of 

time trends. 

Age standardized rates are the result of the weighted average of age specific rates. 

They are usually reported per 100 000 persons and the weight typically refers to the 

proportion of the population in the age group. Figure 2 presents an example of such 

indicator and displays the age standardized death rates by cause of death in the Unites 

States between 1970 and 2002 where the population in 2000 was used a standard 

population. 

 

 
Figure 2: Age standardized death rates by cause of death in the Unites States between 1970 and 2002. 2000 US 

population as standard. (Jemal, Ward, Hao, & Thun, 2005) 
 

The drawback of such indicator is that the rate depends on the period chosen as 

standard as the results will be based on the age composition of it. This means that trends 

over a medium/long time span might not be reliable because the age composition has 

varied sensibly through the years. The population pyramid in Figure 3 clearly show how 

the population has aged in the last 60+ years from 1950 to 2017.  

 



 
 

 
 
 

 

 
Figure 3: On the left, population pyramid for the United States in the 1950; on the right for the year 2017. 

(www.populationpyramid.net) 
 

Alternatively, studies may report age specific rates plotted for different periods or 

cohorts on the same graph displaying the evolution of the outcome through the time 

component of interest. Figure 4 displays, on the left, the age specific death rate from 

bladder cancer for different cohorts of men aged 40 to 69 in England and Wales between 

1951 and 1980. The right hand side of Figure 3 shows the age specific mortality rate from 

lung cancer for women aged 25 to 69 in the same area in the same period. 

 

 
Figure 4: the left panel displays the age specific death rate from bladder cancer for different cohorts of men aged 40 
to 69 in England and Wales between 1951 and 1980. On the right the age specific mortality rate from lung cancer for 

women aged 25 to 69 in England and Wales between 1951 and 1980. (C. Osmond & Gardner, 1982) 
 

The drawbacks of these type of graph is that, as shown in Figure 5, there might be 

inconsistencies between age-period and age-cohort plots: the graph reports incidence 



 
 

 
 
 

 

rates for lung cancer in women aged 20 to 84 who lived in Connecticut between 1940 and 

1984. The solid line reports the age specific rate by period whereas the dotted line 

indicates the age specific incidence rate by cohort. While the trend showed by the cohort 

lines is what could be epidemiologically expected (a rate increasing with age throughout 

all cohorts), the trend reported by periods contradicts this expectation showing a 

flattening after the age of 50 (Yang & Land, 2013). 

 

 
Figure 5: lung cancer incidence rates for women in Connecticut by age. The solid lines are for constant periods, 

while dotted lines are for constant cohorts. (Holford, 1991) 

 

It is therefore possible to understand why these two-way age by period or age by 

cohort graphs are useful only for descriptive purposes and not to quantitatively assess the 

source of change and how the three effect operates (Kupper, Janis, Karmous, & 

Greenberg, 1985). In other words, even though these indicators are a good way to 

introduce time trends, neither one of them represent a full APC model and consequently 

it is not possible to obtain age, period, and cohort effects. In addition, as summarized by 

Osmond (1985), these two measures present an important disadvantage that make them 

unsuited for detailed investigations: it is possible to depict only two of the three time 

component simultaneously, so there will be either rates by period or by cohort. 

Given the limitations of descriptive analysis in understanding the different 

mechanisms for the three time component, it is clear that there is the need for more 



 
 

 
 
 

 

sophisticated statistical modelling. Historically the evolution of age-period-cohort 

analysis from visual approaches using graphs to more qualitative estimation of the effects 

in play, have also been favored by the development of computing power and by the 

refinement of statistical software which nowadays include default packages dedicated to 

APC studies. 

 

Reduced two factors models 

One way of dealing with the identification issue is to use a reduced two-factor 

model. The idea behind this method is to include only one or two time components in the 

model specification (usually age and period): 

 

log�𝐸𝐸𝑎𝑎𝑎𝑎� = log�
𝐼𝐼𝑎𝑎𝑎𝑎
𝑃𝑃𝑎𝑎𝑎𝑎

� + 𝜇𝜇 + 𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑎𝑎 

 

where 𝐸𝐸𝑎𝑎𝑎𝑎 is the expected incidence rate, 𝐼𝐼𝑎𝑎𝑎𝑎 is the number of cases and 𝑃𝑃𝑎𝑎𝑎𝑎 is the total 

population at risk in the age-period cell. Additionally, 𝜇𝜇 is the intercepts 𝛼𝛼𝑎𝑎 is the age 

effect and 𝛽𝛽𝑎𝑎 is the period effect. When considering only age and period effects, it is 

assumed that changes in rates over time are equal across cohorts and that period effects, 

such as the economic situation or technological changes independent from the cohort, 

play the major role in explaining these changes. However, this assumption disagrees with 

an important part of the literature arguing for the importance of cohort effects (Barker, 

1998; Finch & Crimmins, 2004; Fogel & Costa, 1997; Ryder, 1965 and see Fogel, 2003)  

 Kupper et al. (1985) explain further limitations of the above approach; they note 

that besides not including cohort effects, it does not contain any interaction term between 

age and period which could be interpreted as cohort effects. In other words, the expected 

value for the age-period (a, p) cell of a table reporting rates by age and period groups is 

only determined by the marginal effects of the ath row (age) and pth column (period), and 

it does not take into consideration a possible joint effect of the two (cell specific). While 

the exclusion of an interaction term introduces the need for an additional assumption, the 

authors graphically show that it could be difficult to find support for it. 



 
 

 
 
 

 

 

  
Figure 6: On the left, age specific rate per 100,000 by year of death for different age groups. On the right, rates are 

reported on a logarithmic scale. Adapted from (Kupper et al., 1985) 

 

 Kupper and colleagues (1985) argue that a lack of parallelism in the graph 

reporting age-specific rates by period (both on a linear and log scale) is evidence for the 

presence of a cohort effect. The theoretical and graphical lack of support for the 

underlying assumption of such method opens the discussion to other approaches. 

In summing up the two factors approaches, the tactic has been to assess the effect 

of either two of the three components while neglecting the effect of the remaining one (or 

arguing for a negligible importance of the excluded factor). However, age, period, and 

cohort effects are often linked to different causal interpretations and therefore not 

controlling for one of these three components may lead to spurious effects (K. O. Mason, 

Mason, Winsborough, & Poole, 1973). 

 

Constrained Generalized Linear Models 

There are essentially two ways to constrain the coefficients in order to avoid the 

identification problem: just-identified constraints and over identified constraints. Just 

identified models are built by adding to the three time effect a restriction such as forcing 



 
 

 
 
 

 

two age groups to have the same effect (W. M. Mason & Smith, 1985). The second type 

– over identified constraints – force an additional restriction on the model by changing 

the size of age, period, and cohort groups. Usually this is achieved by having larger, less 

refined, groups for periods or cohorts and smaller age categories (Yang & Land, 2013). 

The main disadvantage common to Constrained Generalized Linear Models is that 

in applying them, there is the need to rely on additional information from external sources 

in order to find reasonable constraints, however it is often the case that such information 

is not available. On a similar line of argument, the findings of studies adopting this 

approach become completely dependent on which constraint is chosen and consequently 

different results are found when changing the identification restriction and, in case of over 

identification, on the chosen size for age, period, and cohort groups (W. M. Mason & 

Smith, 1985; Yang, Fu, & Land, 2004). 

 

Proxy variables  

The idea behind the proxy variable approach is straightforward: as the name 

suggests, one or more proxy variable is used to replace the age, period, or cohort variable 

in the model. While relative cohort size can be used as a proxy for cohort effect (O’Brien, 

Stockard, & Isaacson, 1999), unemployment rate or labour force size might be used to 

substitute period effects (Pavalko, Gong, & Long, 2007). Usually either period or cohort 

proxies are used. When the cohort variable is replaced the model is called age-period-

cohort characteristics model (APCC) (O’Brien et al., 1999). This method is particularly 

interesting if we consider the measure of age, period, and cohort effects as an 

unsatisfactory measure of demographic changes: 

 

“The phrase "age, period, and cohort effects" is probably an unfortunate one. 

Ages, periods, and cohorts do not have either direct or indirect effects on 

demographic or social phenomena. Age is a surrogate--probably a very good one 

in most applications--for aging or more generally for physiological states, amount 

of exposure to certain social influences, or exposure to social norms. […] 

However, it is clear that individuals’ age physiologically and socially at different 

rates. "Period" is a poor proxy for some set of contemporaneous influences, and 



 
 

 
 
 

 

"cohort" is an equally poor proxy for influences in the past. (Hobcraft, Menken, 

& Preston, 1982).” 

 

From this is follows that whenever possible, to understand the sources of variation 

in vital rates, it is better to use the underlying variables for which age, period, and cohort 

factors are proxies (Hobcraft et al., 1982). 

Nevertheless, there are some drawbacks in using proxy variables: in first instance, 

the variables chosen as proxies should not be linearly related to the factor they substitute. 

If that is the case the multicollinearity would still be in place. Secondly, somewhat in 

relation to the above Hobcraft and colleagues quote, the substitution of age, period, and 

cohort with measured variables does not necessarily lead to a better model. Whilst it might 

solve the identification problem, it opens up to the possibility of having an incorrectly 

specified model. In other words, if the chosen proxy variables do not account for the full 

variation of the factors they aim at substituting, such approach will be insufficient to 

obtain age, period, and cohort effects (Smith, Mason, & Fienberg, 1982). 

 

Penalty function approach 

This approach can be seen as an alternative way to define model constraints. The 

penalty function is a measure of the distance between the two factors models (age-period, 

age-cohort, and period-cohort) and the three factors model (age-period-cohort). 

Robertson et al. (1999) report a summary of the steps involved in this type of estimation:  

- firstly, the age-period, age-cohort, and period-cohort models must be 

estimated and the parameters obtained saved;  

- then, the full age-period-cohort model must also be estimated by imposing a 

constrain on the parameters that could be arbitrary (e.g. make the effects of 

the first and last period equal) or based on a priori knowledge (biological 

hypothesis based on previous knowledge of the event under study) (see 

Decarli & La Vecchia, 1987);  

- thirdly, the penalty function is derived as the sum of the squares of the 

differences between the parameters of each of the three two-factor models and 



 
 

 
 
 

 

the full three factor model weighted by a measure of goodness of fit of each 

of the three two-factor models, such as the deviance.  

- Finally, the value obtained from the minimization of the penalty function is 

used together with the parameters of the full model to get identifiable estimates 

of age, period, and cohort.  

Other works based on this approach are Barrett (1973) and Osmond & Gardner (1982) 

who use arbitrary constraints and from(Fienberg & Mason, 1979; K. O. Mason et al., 

1973) who constrain the parameters based on prior knowledge (Decarli & La Vecchia, 

1987). More recent contributions are Fu (1998) and Fu (2000). 

 

Nonlinear parametric transformation 

The identification problem can be overcome by including a nonlinear function of 

at least one of the time factors in the model. A classic example for this type of models is 

the inclusion of age squared to explain the nonlinear relation with the outcome of interest. 

This approach has however two main disadvantages: firstly, it might be difficult 

to decide which nonlinear function should be included in the specification; secondly, and 

perhaps even more important, is the fact that the use of this method does not lead to a 

complete solution of the identification problem because the linear effects remain 

undefined. 

 

Individual record approach 

Another way to overcome the indefinability problem was proposed by Robertson 

& Boyle (1986) who suggested that, with the use of individual records, the linear 

relationship between age, period, and cohort could be broken. Their idea was that with 

more detailed data it is possible to assign to each age-period group two distinct cohorts. 

If in a usual two way age (rows)-period(columns) table each cell (cohort) can be identified 

by k=j-i+I where i = (1,…,I) indicates the age groups, j = (1,…,J) indicates the period 

groups and k = (1,…,K) indicates cohort groups, by dividing each cell diagonally the 

lower triangle is now identified with k=j-i+I and the upper triangle is now identified with 

k=j-i+I+1. In this way, the age and the period groups do not point to a unique cohort 

solving the identifiability issue. Graphically:  



 
 

 
 
 

 

 

           
Figure 7: on the left, the table shows the situation when using aggregate data; for each age-period cell there is only 

one cohort related to it. When using individual level data, it is possible to divide people in two cohort groups for each 
age-period cell. 

 

𝑘𝑘 = 𝑗𝑗 − 𝑝𝑝 + 𝐼𝐼           𝑘𝑘 = 𝑗𝑗 − 𝑝𝑝 + 𝐼𝐼 for the lower triangle 

    𝑘𝑘 = 𝑗𝑗 − 𝑝𝑝 + 𝐼𝐼 + 1 for the upper triangle 

 

As Figure 7 shows, in the right column, the square is divided into two triangles 

and this allows for the identifiability problem to be solved (Robertson & Boyle, 1986). 

However, as Osmond & Gardner (1989) noted, the use of individual records does 

not come without problems. They observe that there is still the need for underlying 

assumptions that sometimes might not be justifiable. The fact that the use of individual 

record is not enough to come to a strong solution suggest that the APC is not a problem 

of data but a problem of method (Fu, 2008). 

 

Splines and stastical packages 

The use of splines to deal with the identification issue has gained attention 

following the work of Bendix Carstensen (2007; 2006) who developed functions for the 

statistical software R that fit age-period-cohort models and to graphically display results.  

 



 
 

 
 
 

 

 
Figure 8: Graphical display of the results obtained with the R package designed by Carstensen (2006, 2007). Age 
effects are showed on the left and are reported as incidence rate. Cohort and period effects are the curves in the 

center and on the right of the graph respectively; they are reported as rate ratios with respect to the reference cohort. 

Additional packages have been written for the statistical software STATA first by 

Rutherford, Lambert, & Thompson (2010) and then Sasieni, (2012) proposed a 

complementary approach. The first authors wrote the apcfit command that basically 

translates Carstensen R package in STATA and they additionally provide the 

poprisktime command that helps in transforming the dataset in the proper form to run 

the age period cohort analysis using apcfit.  

 
Figure 9: graph resulted from the application of the apcfit STATA package for age-period-cohort analysis. From left 
to right, the chart reports age, cohort, and period effects. Age effects are displayed as incidence rate whereas cohort 

and period effect are showed as rate ratio with respect to the reference cohort (highlighted with the circle). The 
shaded area represents the 95% confidence interval. 



 
 

 
 
 

 

 

Sasieni further developed the potentiality of age period cohort analysis in STATA 

with the command apcspline that facilitate the extrapolation of the model fit for making 

future projections. 

 

Generalized Linear Mixed Models 

One of the most recent contributions in terms of methodologies have been 

developed in a Generalized Linear Mixed Models (GLMM) context. Such framework 

extends the analytical potential of the Generalize Linear Models by allowing to specify 

both fixed and random parameters at the same time. Within this setting, Yang and Land 

developed the class of Hierarchical Age Period Cohort (HAPC) models (Yang, 2006; 

Yang & Land, 2006, 2008). The underlying idea of these models is that time periods and 

cohort membership represent the social historical context and individuals are embedded 

in this context. This conceptualization is then translated in the model by specifying age 

as a fixed effect, and period and cohort as random effects (Yang & Land, 2013). A clear 

example regarding the application of such methodology is given by Master and colleagues 

(2012). One of the advantage, evident from their work is the easy interpretation of the 

three time effects, that can be reported as death rates, through a set of separate graph for 

the age, period, and cohort impact on the outcome as shown in Figure 10. 

 

 
Figure 10: Age-period-cohort effects from a HAPC model (adapted from Masters et al., 2012) 

 

 

 



 
 

 
 
 

 

Concluding remarks 

In the last decades age-period-cohort studies have been at the center of a 

constructive debate among authors interested in investigating and explaining time effects 

more and more in detail. This article outlined in an organized manner the main methods 

produced from such branch of the literature, highlighting pro and cons of each 

methodology.  

From the first studies to nowadays investigations there has been a shift from 

descriptive approaches to methods able to disentangle the three different effects of age, 

period, and cohort more clearly. Nevertheless, these methodologies rely on sometimes 

strong assumptions and therefore they must be applied carefully. Finally, while there is a 

good selection of methods for aggregated data, there is a need for ways to better and fully 

exploit the increasing availability of large, individual level datasets.   
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